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Schematic Models of Molecular Self-Organization
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Summary: Molecular self-organization is central to the formation of
numerous biological structures and the emulation of this process through the
creation of synthetic counterparts offers great promise for nanofabrication.
Our approach to understanding the principles governing this process is
inspired by existing models and measurements on the self-organization of
actin, tubulin and the ubiquitous icosahedral structures of viral capsids. We
introduce a family of simple potentials that give rise to the self-organization of
chain-like, random surface (‘membrane’), tubular (‘nanotube’) and hollow
icosahedral structures that are similar in many respects to their biological
counterparts.
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Introduction

Molecular self-organization is central to the formation of numerous biological

1) and the emulation of this process through the creation of synthetic

[4-9]

structures
counterparts offers great promise for nanofabrication*'*), The central problems in
this field are an understanding of how the symmetry of interacting particles encodes
information about the geometrical structure of the organized structure and the nature of
the thermodynamic transitions governing this type of organization. Our approach is
inspired by a long tradition of modeling and precise experimental observations on

16191 and crystallin proteins™®),

> type-1
hollow cylindrical structures such a tubulin®®~* and
(39, 40-47)

biological self-organization of chain-like polymers (actin

[21-23] [24-27]

fiber-like polymers (tobacco mosaic virus
[28]

, sickle cell hemoglobin

[29-32])
»

collagen and amyloid fibers

the normally icosahedral structures of plant and animal ‘spherical’ virus capsids
and of clathrin-coated vesicles involved in cellular transport by endo- and exocytosis.!***"!
We obtain these structural forms of self-organization based on minimal models involving
equivalent particles exhibiting an interplay between directional (dipolar and multipolar)
and short-range (van der Waals) interactions. (Zhang and Glotzer have recently recently

considered other interesting examples of self-organization with directional interctions.’)
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Specifically, a dipolar potential, having a continuous rotational symmetry about the
symmetry axis, leads to chain formation at equilibrium®® (equilibrium polymerization®"),
while changing to a potential having a 2-fold and 3-fold discrete rotational symmetries
(e.g., square quadrupole interaction or triangular ring of dipoles, respectively) leads to the
self-organization of nanotube and icosahedral structures resembling those found in the
self-organization of tubular or icosahedral viruses!™ > ***71 This type of self-organization
is also relevant to a wide range of commercial additive materials called ‘gelators’ that self-

organize into nanoscale fiber structurest™ 4

[65-67]

and to synthetic peptide gels promising for
tissue engineering applications.
The term ‘self-organization’, and indeed a whole field of scientific inquiry, was initiated
by the remarkable observation that the proteins and RNA components comprising tobacco

2122 1t was soon realized that

mosaic virus could regenerate into active viruses in vitro
the RNA was often unnecessary for this process, prompting numerous further
investigations into the nature of this highly specific, but apparently equilibrium-based,
organizational process. Self-organization of ‘spherical’ viruses under in vitro conditions
was later observed in the nearly spherical cowpea chlorotic mottle virus.”?! These
developments were facilitated by developments in electron microscopy that enabled the
resolution of the molecular structure of viruses with unprecedented detail (scales on the
A).M It was soon found that while other viruses also had the rod-like form of tobacco
mosaic virus, spherical viruses were more common. This is especially true in the case of
viruses associated with diseases in humans and other animals.

Spherical viruses often contain only enough genetic material for replicating a few proteins
and this led to the notion that the organization must involve particles having ‘equivalent’
structure. This property alone was suggested to be sufficient to understand the formation
of closed structures having a tube-like form of rectangular symmetry or closed structures
belonging to the family of Platonic polyhedra (cube, octahedron, tetradedron,

icosahedron)®%. The formal arguments by Crick and Watson®”!

were soon borne out by
observations indicating a particular prevalence for viruses to form icosahedral
structures. ") A strict equivalence of molecular environments for identical proteins
within viral structures evidently severely limits the size of the virus that can form,
however. Caspar and Klug®' addressed this issue, and the prevalence for icosahedral
symmetry, by allowing for small variations of environment within the organizing virus,
such that ‘inequivalent’ particle environments are minimized. Physically, this loose

principle of ‘quasi-equivalence’ requires that the ’frustration energy’ associated with



inequivalent environments to be minimized and led to the specific suggestion that
spherical viral capsids should be built up from hexagonal and pentagonal protein clusters
and should comprise a specific family of icosahedron-related surfaces
(“icosadeltahedra’).!"*! These surfaces are closed ’geodesic’ or ‘fullerene-like’ structures
comprised of 12 pentagonal clusters and varying number of hexagonal clusters that fill in
the closed structure. A perfect icosahedron of sixty equivalent verices (proteins) has 20
faces, while the larger icosadeltahedron contain an integer multiple of 60 vertices, the
integer factor being a quantized ‘triangulation factor’, 7. Remarkably, the heuristic
arguments of Caspar and Klug and the resulting virus structure classification scheme has
been found to apply to all but a small number of ‘spherical’ viruses!"). Unfortunately, these
formal arguments do not provide any insight into the thermodynamic factors governing
this sort of self-organization, nor is there any specific indication of what the term ‘quasi-
equivalent’ really means in terms of molecular potentials and protein structure.

Stimulated by the philosophical approaches of Crick and Watson**!

and Casper and
Klug®), we seek to develop a family of minimal (’schematic’) models that can give rise to
these types of molecular self-organization processes and that can serve as a testing ground
for understanding the principles of self-organization. Our approach builds on our recent

systematic investigation™”!

of the Stockmayer fluid (SF) involving a fluid having a
competition between dipolar and van der Waals interactions and the formation of
equilibrium linear polymers upon cooling. This is a natural starting point for investigating
protein self-organization since proteins are often characterized by large dipolar (e.g., the
dipole moments of tubulin, collagen and hemoglobin(S) are 1410 D, 1150 D and 545 D,
respectively®) or directional hydrogen bonding interactions and it seems likely these
highly directional interactions must be part of any explanation of molecular self-
organization of proteins in solution (1 D = 3.336 x 10°° Coulomb + m) In particular, we
consider a point quadrupole generalization of the SF that approximately models two side-
by side and head-to-tail dipoles or four charged particles (two plus and two minus charged
particles) in a square ring. We also consider a triangular configuration of SF particles at
the vertices of triangle in a head-to-tail orientation (See Fig. 1). As opposed to the dipolar
SF fluid particles, which have a continuous rotational symmetry about the axis in which
the dipoles point, these ‘composite particle potentials’ exhibit discrete rotational
symmetries (two and three-fold symmetries about the plane containing the particles in the

discrete particle analogs of our model potentials). It seems plausible to us that many real



physical systems should exhibit potentials with these basic symmetries and we inquire into
how these apparently modest generalizations of the SF affect molecular self-organization.

At gas phase densities, the simulation of strongly associating systems can present
challenges for traditional simulation techniques. The strong binding energies between
associated particles and large distances between non-associated particles can make the

configuration-space sampling inefficient’®

since the time required for particles to undergo
an association/disassociation transition can be very long compared to typical molecular
dynamics simulation times. There are MC algorithms that can overcome this problem,
however and in the present work we utilize the Aggregate Bias Monte Carlo algorithm!""
to improve the our sampling of configuration-space. At the heart of this algorithm is an
intra-box swap move that is targeted at sampling the formation or destruction of clusters.
We also implement the simple translational and rotational moves to explore nearby
regions of phase space. The MC computational methods utilized in the present paper have
been described in a previous paper[sol in the case of the SF and their extension to the
potentials defined in the next section is straightforward. The simulation boxes contain 256
particles and have a number density of either p* = 0.001 or p" = 0.02. As with the SF,

the interactions between particle pairs are truncated at half the box length and the

validation of this procedure is discussed in our previous paper"’..

Schematic model potentials and associated patterns of self-organization
A. Stockmayer Fluid

First, we briefly recall some basic aspects of self-organization in the Stockmayer fluid
(SF)®, which is a minimal model exhibiting an interplay between directional (dipolar)
and isotropic (van der Waals) interactions. Specifically, two particles interact via a
Lennard-Jones (LJ) potential and an additional point dipole potential placed the center of
each particle (Fig. 1a). The interactions between particle pairs are truncated at half the box
length and the validation of this procedure is discussed in our previous paper™. The
dipolar contribution to the interaction potential is given by,

Udipole = (Wi * B )/ 157 =3 (Wi * 1) (wy o 1)/ 1 6]
where p; is the dipole moment of particle i and r;; = r; — rj is the separation vector between
particles i and j and the LJ contribution equals,

wy = 4e[(o/ 1) - (o 1r)°], 2)

where the van der Waals (vdW) interaction energy strength & controls the magnitude of the



potential minimum, and o is the separation at which the vdW energy vanishes. The total

potential of the SF fluid equals, usr = ury + Ugipote. In the literature, it is conventional to
define the magnitude of the dipole relative to the vdW energy, (u*)” = u* & €, o where &5
is the dielectric constant of the medium. Physically, the self-energy of a dipole (u/ep &°)
equals the Coulombic interaction energy between two charged hard spheres of common
diameter ¢ and valence that are in contact where u equals the charge magnitude q times
the charge separation o, i.e. u = |q| o. The dipole-dipole interaction of two hard spheres in
head-to-tail configuration is larger in magnitude by a factor of 2 so that the dipolar self-

159 For

energy sets the energy scale also for describing the mutual interactions of dipoles
all of the simulations discussed below, we take u* = 6, unless otherwise stated. With this
choice of dipole strength, the dipolar contribution to the minimum in the potential is
roughly 100 times the LJ contribution so that the directional interaction predominates.[m]
The anisotropy in the potential is illustrated in Fig. 1 of ref. [50], which shows the
minimum of the SF potential as a function of fixed relative orientations of the two
particles for u* = 6. There is a deep minimum in the interparticle potential corresponding
to a head-to-tail alignment of the dipoles and a particle separation r = 0.829 o. The
potential at this minimum for this choice of u* equals umin = — 100 . All densities p
reported in this paper are number densities density and T is normalized by the van der

Waals energy &/ kg , where kg is Boltzmann’s constant.

c)

Figure 1. Multipole potentials. a) dipole, b) quadrupole, ¢) *hexapole’ or dipole triangle.



Figure 2. Polymerization transition in the Stockmyer ﬂid (SF) upon cooling. »
a) T=7.6,b) T=5.95. The density is constant, p = 0.001.

In a previous computational investigation®®®!, we studied the SF as a model of self-
organization and mapped out the thermodynamic transition lines for this fluid as a
function of concentration and temperature. Upon cooling, there is a polymerization
transition where the dipoles chains form and disintegrate in a state of dynamic equilibrium
(Fig. 2). The location of the transition curves defining this transformation are found to be

well-described® by the theory of equilibrium polymerization®!

, where the sticking
energy is uniquely fixed by the minimum in the intermolecular potential between two SF
particles™®.. At low temperatures, the long-range dipolar interaction causes the chains to
form ring structures that minimize the field energy of the polymeric structures. This
topological ransition occurs despite the entropic energetic cost of confining the free ends
of the chain. Figure 2 shows the change in organization as T is lowered through the
transition temperature (T, = 9.8 at this concentration). This transition temperature Ty, is
defined by an inflection point in the T dependence of the extent of polymerization ®
(fraction of particles in the clustered state)®”. T, increases monotonically with
concentration p and the shape of this transition line (Arrhenius temperature dependence of
‘critical concentration’ for polymerization®”) and measurement of this transition line
provides fundamental information about the basic energetic parameters (entropy and
enthalpy of polymerization) governing this thermodynamic transition.

The self-organization of dipolar particles into chains upon lower T below T, leads to the
steady growth of polymer chains, although fluctuations do occur as chains associate and
dissociate in dynamic equilibrium. Raising the temperature within the polymerized regime
leads to a steady decrease in the average size of the chains, the system reverting to largely

monomers for T > T,. The growth upon cooling and the shrinking of the chains upon



heating are quite reversible and no nucleation seems to be required to affect this process.
Fluctuations in thermodynamic variables (average energy E, extent of polymerization @,
chain length L, etc.) become large and long-lived near Tq and the specific heat C, shows a
maximum near Tq, reflecting these fluctuations. The T where the maximum occurs
providing an alternative definition of the polymerization transition temperature. We shall
see that the smooth and reversible nature of the polymerization in the SF is completely

altered by changing to potentials with discrete rotational symmetries.

B. Quadrupole/vdW Fluid

The inclusion of a quadrupole interaction (Fig. 1b) superimposed on the van der Waals
interaction is a direct formal generalization of the SF."'72 The LJ component of the
potential is the same as in Eq. (2). The point quadrupole interaction between two linear

quadrupoles (6 = 0 in Fig. 1b) of magnitude @, and (), whose orientations are described

by the unit vectors e and e ; can be written as,

300,
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More generally, the energy between two pure quadrupoles i and j is given by,
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7
A pure quadrupole charge configuration is defined to have a zero net charge (monopole
strength is zero) and dipole and multipole moments higher than quadrupole also vanish.
An example of such an ideal quadrupole configuration of discrete charges is shown in Fig.

1b. The quadrupole moment tensor for a molecule i consisting of »; discrete (point)

charges of charge gjis given by,

6, =N2'qj(3;l;l_rj23) (5)

IS
More specifically, for the four particle configuration shown in Fig. 1b, consisting of four
point charges of common charge magnitude ¢ and charge separation a between plus and

minus charges, the quadrupole moment tensor reduces to the matrix representation,



oo

_ c0259 0 0
Q=4a’] 0 COSZ SER ©)
0 0 cosi+3

This represents the quadrupole moment tensor for a pure quadrupole in it’s principle axis
frame where the matrix becomes diagonal. The limit 8 — 0 recovers the case of a linear

quadrupole oriented along the z-axis where we have,

-1/2 0 0
Qe =4a’q| 0 -1/2 0 ()
0 0 i

Given that Eqns. (3) and (4) for 8 = 0 are equivalent if Q = 4a’q, we write the quadrupole

moment tensor for a pure quadrupole in it’s principle frame as,

cosf

- 0 0
2
0-0| o sgi’:j 0 ®)
0 0 cosf +3

where O =4a’q is taken to be a general ’strength parameter’ of the quadrupole

interaction. However, the interaction energy between two pure quadrupoles also depends
on the ’quadrupole angle parameter’ 8 so that two-parameters are required to specify this
potential. Similar to the SF, we define a reduced quadrupole interaction strength relative to
the van der Waals interaction as, Q* = Q/(4 m £, 0° £) 2.

Although the local symmetry associated with the ability of SF particles to freely rotate and
translate in space is broken when linear polymer chains begin to form upon cooling, the
freedom of these the particles to rotate about the local chain axis between the particles
remains preserved in the organized structure. This rotational freedom causes the resulting
structures to be floppy and one-dimensional by nature. The discrete rotational symmetry
of the Quad/vdW fluid (Fig. 1b) gives rise to structures that likewise exhibit this discrete
two-fold local symmetry within the organized structure. In Fig. 3, we show a
representative two-dimensional or random surface polymer that spontaneously organize in
the Quad/vdW fluid at low temperatures. These structures are evidently invariant under
discrete two-fold rotations within the sheet so that this symmetry of the individual particle
is likewise preserved in the organized structure. We also observe that the ‘dipoles’

comprising the quadrupole have a strong tendency to form closed loops as in the SF. The



reason is the same, minimization of the energy of the resulting cluster. Thus, the
organization of both the SF and the Quad/vdW fluids are both driven by directional
interactions and the preservation of local symmetries in the single particle potential.

We note that specifically rectangular symmetry of the square quadrupolar potential
significantly impacts the self-organization geometry. Changing the angle 6 of the
quadrupole potential from n/2 can break this symmetry, making it difficult for this
potential to organize the particles into a sheet morphology as in Fig. 3 and a disordered

[73]

network structure forms instead Previous simulations for linear quadrupole

interactions with anisotropic hard-core interactions likewise led to ’branched equilibrium

polymers’.™!
.o %%t $98086a9 ]
RROOOOOS °:‘§:§“§3333?
sl 9,0.0°0°0%7°

Figure 3. Sheets and tubes formed by square Quadrupole/van der Waals fluid. Left
indicates a top view of a representative sheet polymer (T = 1.35, Q* = 1.0, p = 0.001) and
a profile view is shown in top middle. ‘Local charge orientation’ is indicated in the middle
bottom. Right shows side and view of self-organized tubes (T = 1.7, Q* = 2.0, p = 0.001).

The tendency for SF chains to curl up into rings®” from dipolar interactions has its

31 involves the

counterpart in the Quad/vdW fluid. The first stage of this process
formation of a bilayer sheet (a structure that we refer to as ’pita bread’). There multilayers
close-off at their edges and then open up to form a hollow structure. It is through this
process that our nanotubes ‘nucleate’ or initiate growth. Once formed, the tubes continue
to grow from their ends (See Fig. 3). It is also possible to preferentially select tubular
growth through the introduction of a ’seed’ and we illustrate this process below.

The local rectangular symmetry of the self-organized nanotubes is apparent in Fig. 3, but
the development of some helicity is also suggested in this morphology. Note that that this
emergent helical symmetry is not related to molecular chirality, but derives from the
staggering of the particles within the surface to minimize the field energy (This

mechanism of the emergence of chiral symmetery from non-chiral molecules in naotubes

and ribbon self-organization has been discussed before by Schnur’!). We remark that
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tubulin forms nanotubes with a similar rectangular symmetry as a characteristic feature of

1361 and the general tendency to form helical cylinders was suggested

(391

its self-organization

on general grounds by Crick and Watson.

C. Hexapole Fluid with van der Waals Interaction

It is evident that many self-organizing structures do not have the rectangular symmetry
exhibited by the Quad/vdW {fluid model and otherwise do not form one-dimensional
polymeric structures as in the SF fluid. Many structures exhibit 3-fold and 5-fold and even
higher order discrete rotational symmetries. A three-fold symmetry is evident for example
in the faces of icosahedral capsid structures'! and the hexagonal lattice structure of certain

tubular virus structures!”

. Three-fold symmetry is also apparent in the three-arm star
structure of clathrin trimers (‘triskelions’) before they self-organize into icosahedral
frameworks about vesicles.*”) We next introduce a schematic model of the multipole class
that provides some insights into these growth forms.

Three-fold symmetry in our self-organization process can be generated by simply placing
SF particles at the vertices of triangles in a head-to-tail configuration (Fig. 1¢) to obtain a
’hexapole’ or ’triangular dipole potential, augmented by van der Waals interactions
(Hex/vdW model). For simplicity, the dipole strength, van der Waals radius and other
parameters are taken to be exactly the same as in SF (Fig. 1a). Triangular configurations of

[76], so that this

proteins have been directly observed in in the capsid structures of proteins
structure is plausible for modeling virus assembly.

Upon lowering temperature in Hex/vdW model, we observe the self-organization of sheets
similar to those in Fig. 3, except that they have a hexagonal local symmetry. This local
symmetry derives from the 3-fold rotational symmetry of the particle potential and the
tendency of the dipoles within the sheets to form closed ring dipolar paths!™ (See Fig. 3).
In addition to these structures, we also observe the spontaneous formation of hollow
icosahedral structures with remarkable similarities to spherical virus organization. These
structures coexist with the sheet polymers.®>*"*1 An example of one of these icosahedral
structures is indicated in Fig. 4a and in Fig. 4b we show a cut through this object to reveal
its hollow interior. A rendition of this structure is also given in terms of the triangles

defining the hexapole/vdW particles (Fig. 4¢) and we compare this structure to an ideal

icosahedron (Fig. 4d). Notably, each particle in Fig. 4a exhibit ‘equivalent interactions’

and fulfills the formal requirements of Crick and Watson* and Caspar and Klug'"*!.
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(G
Figure 4. Self-organized icosahedron in the Hex/vdW fluid. a) icodahedron formed from
triangular clusters of SF particles, b) slice through icosahedron revealing cluster interior,
¢) reprentation of icosahedron emphasizing position of faces of triangular particles
composing the cluster, d) ideal icosahedron. Conditions: u* = 6.0, T =7.75, p = 0.001.

The formation of icosahedral particles illustrates a new phenomenon regarding how
symmetries of the particle potential encodes information about the symmetry self-
organized species. In addition to the 3-fold symmetry of the icosahedron faces, the
icosahedron is characterized by twelve 5-fold symmetry axes around the vertices of the
icosahedron. How did this symmetry arise that is not shared by the single particle
potential? The answer to this question is apparent by following the course of the
hexagonal symmetry sheet and icosahedron sélf—organization process. In the case of the
sheet with the local hexagonal symmetry, the growth pattern is nucleated through the
formation of a hexagonal seed composed of six Hex/vdW particles in a planar
configuration (Fig. 5), while the icosahedron is nucleated by the formational of a
pentagonal seed with a S-fold symmetry and these fundamental ‘seed’ structures are
shown in Fig. 5. It is apparent that these additional higher order (hexagonal and
pentagonal) symmetries of the organized structure are shared by their nuclei. The
pentagons form by tilting their orientation with respect to their basal plane yielding a
lower potential energy per particle than for 5 particles in an ‘unsatisfied’ flat
configuration. The energy per particle becomes lower for the flat configuration for which
there are 6 particles, but the five-fold symmetry ‘sticks’ once the growth process has
nucleated or is slow to revert to hexagonal form. (This process of kinetic direction of

[77]

capsid organization has been suggested before by Caspar''’* and has been observed in the

assembly of polyomavirus capsids.["



Figure 5. Formation of hexagonal and pentagonal seeds in the Hex/vdW fluid (HF). Left
images show side and top view of the hexagonal seed, while the right images show side
and top views of the pentagonal seed. Note that the Hex/vdW particles tilt out of the plane
to create a surface of near constant mean curvature.

Once the system has formed a pentamer of Hex/vdW particles, it has two options. It can
either form a flat hexagon having a lower energy per particle or continue growing with the
pentagonal seed intact. Continued growth of the pentagonal seed leads to an icosahedron
or other closed structure due to the curvature induced by this ‘defect’ structure. The
completed icosahedron is composed of 12 pentagonal clusters situated at the its vertices
(Fig. 4). By varying the relative propensities of the formation of the 5-fold (pentagons)
and six-fold (hexagons) particle clusters, we should be able to create larger icosahedron
family surfaces that include locally hexagonal symmetry faces. Such structures would be
consistent of the intuitive notion of quasi-equivalence since the hexagonal and pentagonal
particles involve the coexistence of slightly different local particle environments. The
presence of 12 pentagonal clusters in these generalized geodesic structures (including
spherical capsids, clathrin, fullerenes and many other closed self-organizing structures
composed of pentagons and hexagons) is required by Euler’s theorem so that topological
constraints largely dictate the extent to which 5-fold symmetry is expressed in the final
organized structure.”’” In a number of viruses it has been directly obeserved that the viral
capsid assembles directly from preformed pentamer and hexamer umitst*> ** 78 801,
Moreover, an admixture of hollow icosahedra and hexagonal sheets has also been oberved
in capsid protein self-organization in vitro where there is apparently an absence of

1(81:82]

nucleation contro Spherocylinderal tubes similar to buckytubes have also

observed,[™!

although we have not seen these in our simulattions.

The high sensitivity of the growth morphology to seed geometry by inserting seeds of
specific symmetry provides an important means to control the geometry of self-
organization and the kinetics of growth. Seeding can give rise to growth form symmetries
that are not shared by the interaction potential of the assembling particles and to growth

forms that would otherwise not occur with any appreciable probability. This templating
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process'™!

is utilized many biological systems to regulate self-organization into a unique
or nearly unique growth forms and this templating will undoubtedly be important for
synthetic nanofabrication (Inappropriate templating can be expected to toxic structures,
providing a potential explanation of prion and other neurodegenerative diseases.). Figure 6
iltustrates the growth of a hollow cylinder nucleated from a seed having the form of a ring
of hexagons. This heterogeneous nucleation process leads to the propagating growth of a
cylinder with hexagonal local symmetry, a structure that otherwise would not readily
form. We have also found”! that by making the seed anisotropic (by making particles on
one side of the hexagon ring simple vdW particles) we could obtain directional growth
along one direction and an example of this phenomenon (figure not shown). Such
‘polarized growth’ growth is characteristic of many biological self-organization processes

such as microtubule growth emanating from the centrosome in the course of mitosist®®),

Figure 6. Seeded tube formation in the Hex/vdW fluid. Image shows from left to right the
end-on. Side-view and profile view. Conditions: T = 7.85, u* = 6.0, p = 0.001.

Conclusions

We have sought to understand how the symmetry properties of the interaction potential of
model fluids influence the geometrical structure of self-organization. Our potentials
specifically involve a combination of directional (multipole) interactions with isotropic
van der Wals interactions, but similar structures can be expected for other highly
directional interactions™ (hydrogen bonding, hydro-phobic interactions, m-m interactions
of aromatic species, metal chelation, etc.) in competition with van der Waals interactions.
Biological molecules characteristically exhibit large Coulombic, dipolar and multipole
interactions so that the class of potentials that we investigate is promising for

understanding certain broad trends in biological and synthetic self-organization.
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