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Abstract

We have combined automated fluorescence microscopy with a combinatorial approach for creating polymer blend gradients to

yield a rapid screening method for characterizing cell proliferation on polymer blends. A gradient in polymer blend composition of

poly(L-lactic acid) (PLLA) and poly(D,L-lactic acid) (PDLLA) was created in the form of a strip-shaped film and was annealed to

allow PLLA to crystallize. Fourier transform infrared (FTIR) microspectroscopy was used to determine the composition in the

gradients and atomic force microscopy was used to characterize surface topography. Osteoblasts were cultured on the gradients and

proliferation was assessed by automated counting of cells using fluorescence microscopy. Surface roughness varied with

composition, was smooth on PDLLA-rich regions and was rough on the PLLA-rich regions. Cell adhesion was similar on all regions

of the gradients while proliferation was faster on the smooth, PDLLA-rich end of the gradients than on the rough, PLLA-rich end

of the gradients. These results demonstrate the feasibility of a new, combinatorial approach for evaluating cell proliferation on

polymer blends.

Published by Elsevier Ltd.
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1. Introduction

Polymer blending is a common and inexpensive
method to create new materials with desirable properties
and nearly one quarter of manufactured polymers are
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used in blends [1,2]. Polymer blending can be used to
optimize material properties such as modulus, strength,
morphology, crystallinity and biocompatibility, and, in
turn, these properties can affect cell response [3–5]. In
order to advance the ability of tissue engineers to study
cell response to polymer blends, we have combined
automated fluorescence microscopy with a combinator-
ial approach for creating polymer blend gradients to
yield a rapid method for characterizing cell proliferation
on polymer blends.
Current methods for the development of biomaterials

require preparing and characterizing individual materi-
als one at a time. Although this approach is effective, it
can be costly and time-consuming. Conversely, the
application of combinatorial and high-throughput
methods to materials design could potentially accelerate

www.elsevier.com/locate/biomaterials
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research in this field [6]. Towards this end, several
groups have devised combinatorial and high-throughput
methods for biomaterials development [7–11]. In the
current study, we present a new, combinatorial method
for examining cell proliferation on polymer blends.
A three-syringe pump system with a mixing vial was

used to create a gradient in polymer composition of two
polymers along the barrel of syringe. The gradient was
deposited from the syringe onto a substrate using a
motorized stage to yield a two-dimensional composition
gradient in the form of a strip-shaped film [4,12].
Gradients were made from two polymers commonly
used in biomaterials, poly(L-lactic acid) (PLLA) and
poly(D,L-lactic acid) (PDLLA). PLLA and PDLLA are
chemically similar and differ only in their tacticity such
that PLLA is crystalline and PDLLA is amorphous.
PLLA also has a higher modulus than PDLLA [10,13].
The composition of the gradients was determined by
Fourier transform infrared (FTIR) microspectroscopy
and cells were cultured on the gradient films. Cell
adhesion and proliferation were analyzed with auto-
mated fluorescence microscopy. The results show that
cell proliferation was enhanced on PDLLA-rich regions
of the gradients and demonstrate the feasibility of this
unique combination of composition gradient technology
and automated fluorescence microscopy.
2. Materials and methods

2.1. Preparation of polymer films

Polymer composition gradients were prepared from PLLA

(Mw ¼ 300; 000; Polysciences, Warrington, PA) and PDLLA
(Mw ¼ 330; 0002600; 000; Polysciences, Warrington, PA) as
described elsewhere [4,10,12]. Briefly, a solution of PDLLA

was infused from a syringe at a rate of 1mL/min into a mixing

vial containing 2mL of PLLA (with stir bar) while a second

syringe removed the polymer mixture at a rate of 2mL/min.

Meanwhile, a third syringe sampled the mixing vial by

withdrawing 0.075mL of blended polymer solution over

2min to yield a composition gradient in the barrel of this

third ‘sampling’ syringe. The gradient was deposited from the

sampling syringe onto a Low-e slide (Kevley Technologies,

Chesterland, OH) using a motorized stage and the bead of

polymer solution was allowed to dry into a strip-shaped film

[10] that was approximately 4 mm thick as determined by

profilometry (Dektak 8 Stylus Profilometer, Veeco, Wood-

bury, NY). Low-e microscope slides have a coating which

reflects the infrared light back through the polymer film to

yield reflection-transmission spectra [14].

Twelve composition gradients were prepared that were

approximately 50� 4mm. Control strip films of five discrete

blend compositions (0%, 25%, 50%, 75%, 100% mass

fraction PLLA) were also prepared for FTIR calibration. All

of the gradient and control films were melted at 200 1C for

5min (above Tm) and then annealed at 120 1C for 8 h (between

Tg and Tm) under nitrogen to remove residual solvent and to
induce crystallization of the PLLA. Surface topography of the

films was examined with tapping-mode atomic force micro-

scopy (AFM) using a Dimension 3100 Nanoscope IIIa (Veeco

Instruments, Inc., Woodbury, NY). Birefringence from

spherulites was observed in a transmitted-light microscope

using crossed polarizers.

2.2. FTIR microspectroscopy

FTIR reflection-transmission microspectroscopy (FTIR-

RTM) [14] was utilized to map six of the PLLA-PDLLA

gradients and the five calibration control films. A Nicolet

Magna-IR 550 FTIR spectrophotometer (Madison, WI)

interfaced with a Nic-Plan IR microscope with an automated

stage (Spectra-Tech, Inc., Shelton, CT, USA) and the Atlus

mapping software (Thermo Electron Corp., Madison, WI) was

used. Matrices of spectra (1872–2310 spectra per map) were

collected from 4000 to 650 cm�1 (spectral resolution 8 cm�1, 32

scans per spectrum, spot size 0.2� 0.2mm). The 1270 cm�1

peak (ester C–O stretch) [15] is dependent on PDLLA

concentration and the 1450 cm�1 peak (methyl asymmetrical

bending) [15] is constant and serves as an internal standard

[14]. The map in Fig. 2b was processed as ratios between the

areas of the 1270 cm�1 and the 1450 cm�1 peaks

[(1246–1286) cm�1 and (1420–1500) cm�1 spectral regions,

respectively)] and presented as a color contour map. The color

thresholds for this map were adjusted manually to achieve

optimal color contrast between the ends of the gradient.

For quantitative determination of the compositions of the

gradients (Fig. 2c), the maps of the control discrete blends and

maps of the gradients were imported into the ISys software

package (Spectral Dimensions Inc., Olney, MD). The ratios

between the 1270 cm�1 and the 1450 cm�1 peaks were

calculated for all spectra in the same spectral regions used in

processing the color contour maps. A calibration curve (linear

regression, R2 ¼ 0:998) was constructed from the discrete

blend strip films [(25, 50, 75 and 100) % PLLA] by plotting the

ratios of the 1270 cm�1 peak and the 1450 cm�1 peak versus

the fraction of PLLA in each discrete film. This calibration

curve was used to determine the composition of the gradients

as previously described [14].

2.3. Cell culture

MC3T3-E1 cells are a well-characterized murine osteoblast-

like cell line which serve as a model for endogenous osteoblasts

[16]. Established protocols for the culture and passage of

MC3T3-E1 cells were followed [17]. Cells were obtained from

Riken Cell Bank (Hirosaka, Japan) and cultured in flasks

(75 cm2 surface area) at 37 1C in a fully humidified atmosphere

at 5% CO2 (volume fraction) in alpha-modification of Eagle’s

minimum essential medium (Cambrex Bio Science, Walkers-

ville, MD) supplemented with 10% volume fraction fetal

bovine serum (Gibco, Rockville, MD) and 0.060mg/mL

kanamycin sulfate (Sigma, Inc., St. Louis, MO). Medium

was changed twice weekly and cultures were passaged

with 2.5 g/L trypsin (0.25% mass fraction) containing

1mmol/L EDTA (Gibco, Rockville, MD) once per week.

Cultures of 80% confluent MC3T3-E1 cells were used for all

experiments.
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The 12 PLLA-PDLLA gradients were sterilized in 70%

ethanol (mass fraction) for 5min, rinsed in media and seeded

with 106 MC3T3-E1 cells in 150 cm2 petri dishes (7000 cells/

cm2) with 50mL of media. Six plain glass slides were also

sterilized and seeded with cells as controls. Gradients and

controls were incubated with cells for 4 d, fixed for 5min (0.5%

mass fraction Triton X-100, 4% mass fraction paraformalde-

hyde, 5% mass fraction sucrose, 1mmol/L CaCl2, 2mmol/L

MgCl2 in phosphate buffered saline, pH 7.4) and post-fixed for

20min (same as fix but without Triton X-100). Fixed cells were

fluorescently stained for 1 h with 6mmol/L 40,6-diamidino-2-
phenylindole, dihydrochloride (DAPI) and 2mmol/L Texas

Red C2-maleimide (both from Molecular Probes, Eugene, OR)

in phosphate-buffered saline. DAPI stains cell nuclei blue and

Texas Red C2-maleimide stains cell membranes red [18].

Stained cells were mounted with a coverslip in Vectashield

containing DAPI (Vector Laboratories, Inc., Burlingame,

CA).
2.4. Automated fluorescence microscopy

The number of cells present on the gradients was quantified

by counting DAPI-stained cell nuclei using automated

fluorescence microscopy with a Leica DMR 1200 upright

microscope equipped with a computer-controlled translation

stage (Vashaw Scientific, Inc., Frederick, MD). Image Pro

software (Media Cybernetics, Carlsbad, CA) was used to run

the stage and image acquisition. A 50� 3 matrix of images was

taken of each composition gradient and of each glass control

slide using automated microscopy. Images were acquired with

a 10� eyepiece and a 10� objective (100�magnification) and

approximately 25% of the surface of each gradient was

imaged. The number of nuclei present in each of the images

was tabulated using a macro that was written for Image Pro.

The macro opens each image file, counts the number of nuclei

and records the number in a text file. The text files were

imported into Microsoft Excel and analyzed. Images of

cell morphology were acquired manually using the same

equipment described above but through a red fluorescence

filter cube to image Texas Red C2-maleimide-stained cell

membranes.
2.5. Statistics

When a ‘standard deviation’ is given in the text or shown as

an error bar on a plot, it refers to the ‘standard deviation of the

mean’, which is the same as the ‘combined standard

uncertainty of the mean’ for the purposes of this work.

ANOVA with Tukey’s test for multiple comparisons was used

to analyze the cell adhesion and proliferation data.
Fig. 1. Control films of pure PLLA and pure PDLLA were melted and

annealed. (a) PDLLA through crossed polarizers. (b) PDLLA in

AFM. (c) PLLA through crossed polarizers. (d) PLLA in AFM. The

size bar in (a) also applies to (c) and the size bar in (b) also applies to

(d). RMS roughness (root mean square) was measured three times on

three film specimens for each polymer and averages with S.D. of the

mean are given in (b) and (d). The arrow in (d) points to a grain

boundary between two spherulites and a height scale for the AFM

images is given on the far right of the figure.
2.6. Note

Certain equipment and instruments or materials are

identified in the paper to adequately specify the experimental

details. Such identification does not imply recommendation by

the National Institute of Standards and Technology, nor does

it imply the materials are necessarily the best available for the

purpose.
3. Results

Control films of pure PDLLA and pure PLLA were
melted and annealed as a reference for the gradients.
Control films of pure PDLLA did not contain birefrin-
gent spherulites when viewed with crossed polarizers
(Fig. 1a) and they had a smooth surface topography
(RMS roughness ¼ 4 nm; Fig. 1b). In contrast, control
films of pure PLLA contained birefringent spherulites
(Fig. 1c) and had a coarse surface topography (RMS
roughness ¼ 43 nm; Fig. 1d) that was ten times rougher
than PDLLA. Unannealed PLLA films were similar to
PDLLA films in that they did not contain spherulites,
were not birefringent and had a smooth surface
topography (data not shown).
Twelve PLLA-PDLLA composition gradients were

prepared and FTIR-RTM [14] was used to characterize
six of them. The color contour map of one of the
gradients is shown in Fig. 2b. Blue indicates PDLLA-
rich regions of the gradients and orange represents
PLLA-rich regions. The map shows that a qualitative
gradient in composition was present in the film and
similar trends were found in the other five gradient films
that were mapped. A plot of averaged quantitative
composition data taken from the spectra of the six
gradients that were mapped is shown in Fig. 2c. Linear
regression was used to fit the solid line to the data in Fig.
2c and shows that the composition gradients in the films
are nearly linear (R2 ¼ 0:94). There are also some
compositional fluctuations in the gradients. For exam-
ple, the compositions at 0 and 10mm are similar and the
gradient is nearly flat from 35 to 45mm. The equation
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describing the linear fit in Fig. 2c was used to translate
‘‘Position’’ along the gradients into ‘‘Fraction PLLA’’
along the gradients. The average error on the composi-
tion values in Fig. 2c was 5.0% (average height of the y-
error bars) which implies that composition values
throughout the manuscript have an approximate error
of 75%. These data show that gradients in polymer
composition existed in the films and that the gradients
ran from 25% to 100% PLLA.
Transmitted light microscopy through crossed polar-

izers was also used to characterize the composition
gradients. In Fig. 2a, a composite of 46 overlapping
images taken of a gradient was assembled and shows
that birefringence changes with composition. Increased
PLLA content corresponded to increased birefringence
since PLLA is crystalline and PDLLA is amorphous.
Similar gradients in birefringence existed in all 12
composition gradients that were made. Higher magni-
fication images showed that spherulite morphology also
varied with composition (data not shown). PDLLA-rich
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Fig. 2. (a) An image of the birefringence from a PLLA-PDLLA gradient is

using transmitted light microscopy were assembled into the final image shown

to be more birefringent than the PDLLA-rich end. The gradient shown is

gradient. The strip film has been outlined with a black line. A qualitative grad

rich regions and orange corresponding to PLLA-rich regions (see color bar b

from bare regions on the slides and were not included in the composition

determined with FTIR-RTM were averaged and plotted versus position.
ends of the gradients were completely amorphous and
did not contain any birefringent spherulites while
PLLA-rich ends of the gradients contained only
spherulites and no amorphous regions. Middle regions
of the gradients had areas where part of the volume was
spherulitic and part of the volume was amorphous. This
resulted in regions where a lone spherulite might be
surrounded by amorphous polymer, or an amorphous
zone might be surrounded by a number of spherulites.
These morphologies were observed in discrete PLLA-
PDLLA blends in earlier studies [19], PLLA-PDLLA
gradients in a previous study [10] and in the FTIR
calibration films of the present work (data not shown).
Gradients in birefringence and spherulite morphology
were present in all 12 gradients that were made. These
data serve as an additional indicator that our specimens
contained gradients in polymer composition.
AFM (Fig. 3) revealed that surface roughness varied

across the gradients, was dependent on composition but
was not predictive of composition. Spherulites having a
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shown. Forty-six overlapping images taken through crossed polarizers

. The higher crystallinity of the PLLA-rich end of the gradient causes it

52mm long. (b) FTIR-RTM map of a PLLA-PDLLA composition

ient in color is visible in the film, with blue corresponding to PDLLA-

elow map). Pixels located outside the black borders represent artefacts

calculations. (c) The compositions of six PLLA-PDLLA gradients
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roughness similar to pure PLLA (Fig. 1d) formed on the
PLLA-rich ends of the gradients (Fig. 3f–g) while the
PDLLA-rich ends were smooth and amorphous (Fig.
3a) similar to pure PDLLA (Fig. 1b). Starting from the
PDLLA-rich end, surface RMS roughness of the
gradients increased as the fraction of PLLA increased
(Fig. 3(h). Roughness then reached a plateau between
60% to 80% PLLA (Fig. 3(h) before becoming some-
what smoother from 80% to 100% PLLA. Although
there is not a well-defined correlation between blend
composition and surface roughness, these results show
that surface topography varied across the gradients.
Osteoblast-like MC3T3-E1 cells [16] were cultured on

the gradients and on control glass slides for 1 or 4 d and
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Fig. 3. Surface topography of the gradients varies with composition. (a–g) A

Mass fraction PLLA (calculated from linear regression in Fig. 2c) and RMS

images is provided to the right of (g). (h) The RMS roughness data from six

error bars of 5.0% have been omitted for clarity.
then cell morphology was examined by fluorescence
microscopy. After 1 d, cells were spindly on all regions
of the gradients (Fig. 4a and b) but were well spread on
glass (Fig. 4c). By 4 d, cells were well spread and
attained a normal, polygonal morphology on the PLLA-
PDLLA gradients and on the glass controls (Fig. 4d–f).
Cell adhesion and proliferation were examined by

counting cells per mm2 using automated fluorescence
microscopy (Fig. 5). Adhesion at 1 d was similar on all
regions of the gradients (open circles, Fig. 5b) but
proliferation by 4 d was faster on the PDLLA-rich ends
of the gradients (closed circles, Fig. 5b). Proliferation
was fastest at 25–35% PLLA but was slower and nearly
monotonic on the rest of the compositions (35–100%
70 80 90 100

on  PLLA (%) PLLA-rich

 51%, 93.0 nm  63%, 61.7 nm

 95%, 50.3 nm

PLLAPLLA -- RichRich

+250 nm

Height Scale

0 nm

-250 nm

(c) (d)

(g)

FM height images taken from a PLLA-PDLLA gradient are shown.

roughness is given at the top of each image. The height scale for all the

gradients was averaged and plotted against composition. Note that x-
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PLLA). As a control, cell numbers across glass slides
were determined at 1 and 4 d (Fig. 5a). As expected, cell
adhesion at 1 d (open circles) and proliferation at 4 d
(closed circles) were not affected by position on the glass
slides.
The cell number data was analyzed by ANOVA with

Tukey’s test for multiple comparisons to determine
significant differences using Sigmaplot software (Systat
Software, Inc., Point Richmond, CA). In order to make
the data analysis manageable, the data points from each
of the four plots in Fig. 5 were grouped into sets of 3, re-
averaged and re-plotted in Fig. 6a–d. Each data point
for a particular plot (a–d) was compared to each of the
other points in that plot to test for significant
differences. Significant differences (po0:05) are indi-
cated by grey shading in the tables to the right of each of
the plots in Fig. 6. Predictably, there are no shaded
boxes in the tables to the right of Fig. 6a-b which
indicates that there were no positions on the control
glass slides where cell adhesion (Fig. 6a) or proliferation
(Fig. 6b) were significantly different from that of other
positions on the glass slides. There are some significant
differences in cell adhesion on the gradients after 1 d
(Fig. 6c) but these differences are inconsistent. However,
after 4 d on the gradients (Fig. 6d) cell number at 29%
PLLA (mass fraction) was significantly different from
the other positions on the gradient. These data indicate
that cell proliferation was enhanced on the PDLLA-rich
end of the gradients.
In Fig. 6e, data from ‘‘gradients, 4 d’’ was further

analyzed by plotting the cell number data against
surface roughness. These data were also binned and
statistically analyzed as described above. The data show
that cell proliferation was significantly faster on the
smoothest portions of the gradients (RMS roughness of
11 nm) than on the rougher portions of the gradients
Fig. 4. Cell morphology on the PLLA-PDLLA gradients. Cells were imaged

maleimide: (a) 1 d, PDLLA-rich; (b) 1 d, PLLA-rich; (c) 1 d, glass; (d) 4 d, PDL

(a) is 0.25mm and applies to all six images.
(RMS roughness between 17 and 70 nm). These results
seem to suggest that cell proliferation is enhanced by the
smoother surface topography of the PDLLA-rich
blends. However, it is not possible to distinguish if the
cause of the enhanced proliferation is a result of
composition or surface roughness since both parameters
vary across the gradients.
4. Discussion

Several previous studies have examined cell behavior
on PLLA and PDLLA and the general conclusion from
these efforts is that cells can adhere, proliferate and
differentiate on these polymers [20–27]. Three studies
directly compared cell response to PLLA and PDLLA
[20,21,24]. Ishaug-Riley et al. [24] found that human
chondrocyte adhesion (8 h) and proliferation (7 d) are
better on PLLA than on PDLLA. In contrast, van
Sliedregt et al. [20,21] observed that several cell types
(epithelial cells, fibroblasts and osteosarcoma cells)
proliferate faster on PDLLA than on PLLA, obtain a
normal morphology on both polymers but are unable to
form a confluent monolayer on either polymer after 14 d
culture. However, none of these studies used annealed
polymers, which implies that their PLLA specimens did
not have a spherulite-roughened surface topography as
is seen herein with annealed PLLA.
Interestingly, effects of PLLA crystallinity on cell

response have been reported [5,28,29]. Hepatocyte
adhesion, proliferation and differentiation are enhanced
on amorphous PLLA (un-annealed) as compared to
crystalline PLLA (annealed) [29]. In addition, fibro-
blasts [29] and osteoblasts [5] were found to proliferate
more quickly on amorphous PLLA (un-annealed) than
on crystalline PLLA (annealed) and animal studies
through a red fluorescent filter for the membrane stain, Texas Red C2-

LA-rich; (e) 4 d, PLLA-rich; (f) 4 d, glass. The size bar at the bottom of
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showed that tissue ingrowth is faster into amorphous
PLLA scaffolds (un-annealed) than into crystalline
PLLA scaffolds (annealed) [28]. In the current study, a
similar trend of enhanced proliferation on amorphous
poly lactides (i.e. the PDLLA-rich ends of annealed
PLLA-PDLLA gradients) was observed (Fig. 5a and
Fig. 6d).
It is well known that microscale surface topography

can influence cell behavior [30] and this tenet seems to
hold true for surface topography on the nanometric
scale as well [4,5,30–33]. In addition, it is becoming clear
that adsorbed proteins in vitro [18,34] and basement
membranes in vivo [35,36] present a complex topogra-
phy for cell adhesion and that this topography consists
primarily of ridges, pores and fibers in the size range of
5–200 nm. In the current study, cells were cultured on
PLLA-PDLLA composition gradients that contained
regions of varied RMS roughness ranging from 8 to
80 nm. Cell proliferation was enhanced on the smooth
regions of the gradients, but the results do not indicate
whether the enhanced proliferation is caused by surface
roughness or blend composition.
A number of high-throughput methods have emerged

for characterizing cell response to variations in the
properties of biomaterials. The material parameters that
have been examined from a high-throughput perspective
include surface energy [37], crystallinity [5], ligand-
density [38–41] and composition [4,42–44]. In addition,
a number of gradient [45,46] and discrete [47,48]
techniques for high-throughput characterization of
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Fig. 6. A statistical analysis of the cell adhesion and proliferation data in Fig. 5 was performed using ANOVA with Tukey’s test for multiple

comparisons. In order to make the analysis manageable, the number of data points from Fig. 5 was reduced by a binning process. Data points were

grouped into sets of three, re-averaged and re-plotted: (a) glass, 1 d; (b) glass, 4 d; (c) gradients, 1 d; (d) gradients, 4 d. In (e), data from ‘‘gradients,

4 d’’ was further analyzed by plotting the cell number data against surface roughness. These data were also binned and statistically analyzed. Each

data point for a particular plot (a–e) was compared to each of the other points in that plot to test for significant differences. Significant differences

(po0:05) are indicated by gray shading in the tables to the right of each of the 5 plots. When x-error bars are not visible in the plots, they were smaller

than the diameter of the data points. The x-values of the data points in the plots are shown above each point and are used to label the rows and

columns in the tables to the right of the plots.
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blends have also emerged. However, the novel combina-
tion of automated fluorescence microscopy and polymer
composition gradient technology presented here is the
only method optimized for rapidly screening cell
proliferation on polymer blends.
5. Conclusions

A rapid method for screening cell proliferation on
polymer blends was developed. Strip-shaped films
containing a gradient in polymer composition were
prepared and characterized with FTIR-RTM and AFM.
Cells were cultured on the films and adhesion and
proliferation were assessed using high-throughput,
automated microscopy. Adhesion was similar on all
regions of the gradients after 1 d but after 5 d prolifera-
tion was enhanced on the PDLLA-rich ends of the
gradients. The PDLLA-rich ends of the gradients had
smoother surface roughness than other regions on the
gradients. The enhanced cell proliferation on PDLLA-
rich regions of the gradients correlated with this smooth
topography but it is unclear whether this is a result of
blend composition or surface roughness since both
parameters are varied across the gradients. These results
suggest that, for the case of PLLA-PDLLA blends,
PDLLA-rich blends that have a smooth surface are best-
suited for supporting cell proliferation. In addition,
these results demonstrate the feasibility of a new,
combinatorial approach for evaluating cell proliferation
on polymer blends.
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