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Thomas H. Epps, III

Polymers Division
Materials Science & Engineering Laboratory

National Institute of Standards and Technology

Combinatorial Studies of Block Copolymer Interactions 
with Surfaces 
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Polymer Thin FilmsPolymer Thin Films
• Triblock copolymers potential for designing 

percolating nanomaterials
• Goal: Explore ability of polymers to 

accommodate thin film boundary conditions
– Influence of surface energy on wetting and 

morphological properties (surface directed 
structures)

– Confinement effects on triply-periodic morphologies 
(absence of preferential alignments: parallel or 
perpendicular)

Free surface

substrate

cylinders lamellaeFree surface

substrate

cylinders lamellae

Symmetric
wetting

Anti-Symmetric
wetting

Neutral surface:
perpendicular domains

Substrate Surface Energy Gradient

do do

h = (n+1/2)doh = ndo
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• Poly(isoprene-b-styrene-b-ethylene oxide) [ISO]
• Bulk phase portrait – 3 adjacent network phases

Polymer SystemPolymer System

Double 
Gyroid

Orthorhombic 
Network

Alternating  
Gyroid
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Network PhasesNetwork Phases

Q230

(Ia3d)

O70

(Fddd)

Q214

(I4132)

Lattice Morphology Experimental TEMSimulated TEM

Cochran, Bailey, and BatesCochran, Bailey, and Bates 30 nm scale bars30 nm scale bars
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Potential ApplicationsPotential Applications
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Challenges to Materials DevelopmentChallenges to Materials Development

New materials are:

• Highly Tailored: Optimized to meet a specific application. 
– Exact chemistry, microstructure, surface properties, 

biocompatibility…

• Highly Formulated: Include many components on many levels.
– molecular, mixtures, processed and fabricated structures…

• Exhibit Complex Behavior: Properties are governed by a 
plethora of (often competing) factors.
– composition, molecular properties, specimen geometry, 

processing, environmental factors…   

Discovery and optimization of new materials 
is difficult, costly and time consuming.



Th
om

as
 H

. 
Ep

ps
, 

II
I 

  
  

 N
IS

T 
/ 

D
el
aw

ar
e 

  
  

 N
CM

C 
20

06

Combinatorial MethodsCombinatorial Methods

Combinatorial and high-throughput (C&HT) techniques accelerate 
the study and optimization of complex systems by launching 
research beyond the “one-at-a-time” experiment paradigm… 

Single Specimens become
Multivariate Libraries

C

• Thorough exploration of large parameter spaces
• Rapid assessment and optimization of complex systems
• Increased productivity
• Reduced waste, Reduced use of expensive components

C&HT

Slow, Single Measurements become
Automated, Parallel, Rapid Screens

HT
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Interfacial Energy at the Substrate Interfacial Energy at the Substrate 
SurfaceSurface

Surface Energy Gradients Using SAM’s
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Gradient Substrate  FormationGradient Substrate  Formation

water contact angle 

computer controlled 
motorized stage

chlorosilane (ODS) SAM subjected to 
UV-ozone (UVO) exposure gradient

polymer film flow-coated on 
substrate

exposure dependent 
SAM conversion

O-Si-(CH)7-CH3

CH3

CH3

O-Si-(CH)6-COOH
CH3

CH3

UVO
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AFM of Gradient SampleAFM of Gradient Sample

• Film thicknesses tuned for probing wetting layer and 
first full layer behavior

• Samples annealed at 110 °C (1-12 hours)
• Approximately 6 surface energies examined per 

sample

AFM Cantilever

Substrate
wetting layer

1st full layer
0
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Bulk Data on ISO PolymersBulk Data on ISO Polymers

ISO-2a
Mn = 15.4 kg/mol

fo = 49/36/15
Double 
Gyroid

d = 44 nm

ISO-3i
Mn = 17.8 kg/mol

fo = 39/40/21
Orthorhombic 

Net
d = 22 nm*

ISO-15a
Mn = 14.5 kg/mol

fo = 27/56/17
Alternating 

Gyroid
d = 22 nm

Increasing Poly(isoprene) Content

Substrate
wetting layer

1st full layer do
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Polymer Microstructure using AFMPolymer Microstructure using AFM

90° 10°
70°

Surface Energy Gradient

Bulk Structure

•Half period wetting layer
•Featureless islands and holes
•Likely surface parallel lamellae
•d = 16 nm (scratch test)

High Contact Angle Low Contact Angle

•Dewetting, droplet formation
•Half period wetting layer
•Featureless islands and holes
•d = 16 nm (scratch test)

fo = 27/56/17
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Dewetting of Polymer FilmDewetting of Polymer Film

~ 70°

90° Contact 
Angle Reference 
Region

Post-anneal

90° 70° 10°

Dewetting 
Observed After 2 
Hours Annealing

5x 5x5x

90° 10°70°
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Autophobic Dewetting ?Autophobic Dewetting ?

h = 8.4 nm

h = 24.0 nm

90° 10°70°

Transient Dewetting Image

Wetting Layer
½ do ~ 8 nm

Domain Spacing
do ~ 16 nm

AFM Topography Image
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Wetting Layer Composition AnalysisWetting Layer Composition Analysis

Symmetric
wetting

Anti-Symmetric
wetting

Neutral surface:
perpendicular domains

do do

h = (n+1/2)doh = ndo

Diblock Case

Triblock Case

• Surface energy determines 
wetting layer composition profile

• Almost always asymmetric 
wetting layer

• Wetting layer influences polymer 
thin film structure

Sample Triblock Wetting Layer 
Composition Arrangements

Much more complicated than diblock case!

…And 
many 
more…
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XPS XPS –– Top SurfaceTop Surface

Substrate

PS + PI
PEO?

wetting 
layer

PS?
PI?

½ do

1.0E+04

1.0E+05

1.0E+06

1.0E+07

02004006008001000

Binding Energy (eV)

In
te

ns
ity

 (C
PS

)

Before Ion Etching

After Etching

Low Water Contact Angle

0

0.04

0.08

0.12

0.16

0.2

0 20 40 60 80 100
0.8

0.84

0.88

0.92

0.96

10.2

0.16

0.12

0.08

0.04

0
0 20 40 60 80 100

1

0.92

0.96

0.80

0.88

0.84

O
xy

ge
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M
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s 
C

on
c. C

arbon M
ass C

onc.

Water Contact Angle

• Top surface carbon concentration decreases 
as water contact angle of bottom surface 
increases 

• Top surface oxygen concentration increases 
as water contact angle increases

• Conclusion – more poly(ethylene oxide) at 
bottom surface at lower contact angles

• Before etching - hydrocarbon surface
• After etching - oxygen rich surface
• PEO block preferential interaction with SiO2

substrate
• Not all carbon accounted for at bottom surface
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NEXAFS NEXAFS –– Top SurfaceTop Surface

Substrate

PS + PI
PEO?

wetting 
layer

•Examined film containing only wetting 
layer (low contact angle)

•Mixed PS/PI layer
•Minimal  PEO detected down to ~6 nm 

ISO (annealed)
PS

PI
ISO (as cast)

PS

PI
ISO (as cast)
ISO (annealed)

250V Bias
~ 0-2 nm

150V Bias
~ 0-4 nm

PS

PEO
PI
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Bottom Surface AnalysisBottom Surface Analysis
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Carbon

PAA

FILM

Sample PreparationSample Preparation

Drying at 50 °C, Overnight

XPS Sample Holder

1 2 3 4 5 6 7

Gradient Film

Evaporate 
Carbon Layer

PAA/H2O 
Solution on Film

~ 75% Relative 
Humidity, 4-6 hours

“Pop” PAA-Layered 
Films From Substrate

Substrate
SAM

FILM

PAA

Carbon

XPS Sample Holder

Carbon

PAA

FILM
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Bottom Surface AnalysisBottom Surface Analysis

• PS and PEO detected at surface
• No PI detected at surface
• No SAM on surface (SAM 
remained on substrate)

• Significant PS content (poor 
etching behavior using SF5

+

sputtering)

• PEO and unsaturated 
hydrocarbon detected

• Relative compositions determined 
using oxygen atomic 
concentration as basis

• Layer composition affected by 
surface energy

XPS
Atomic Conc. (O) = 9.5%
Carbon:Oxygen Ratio = 9.6:1 ~ 10:1
Surface PS:PEO Mole Ratio = ~ 1:1

XPS
Atomic Conc. (O) = 5.2%
Carbon:Oxygen Ratio = 18.3:1 ~ 18:1
Surface PS:PEO Mole Ratio = ~ 2:1

TOF - SIMS XPS

Carbon

PAA

FILM
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• Poly(styrene) content 
increases as hydrophobicity
of substrate (water contact 
angle) increases

• Poly(ethylene oxide) content 
decreases as hydrophobicity
increases

• Minimal poly(isoprene) 
content at bottom surface

Bar graph of PS and PEO mole fractions
as a function of contact angle

0

0 .2

0 .4

0 .6

0 .8

1

1 2 3 4

P o ly (s ty r e n e )

P o ly (e th y le n e  o x id e )
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1
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Poly(ethylene oxide)

Fr
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l C
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n

Water Contact Angle

• Distinct differences in PS, PI, 
and PEO homopolymer carbon 
spectra

• Linear combination of spectra 
used to estimate sample 
compositions

• Good fit achieved in all cases

NEXAFS NEXAFS –– Bottom SurfaceBottom Surface
Pa

rt
ia

l E
le

ct
ro

n 
Yi

el
d 

(a
.u

.)

Composition Fit
Experimental Data

Photon Energy (eV)
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Wetting Layer / Substrate EffectsWetting Layer / Substrate Effects

Substrate

PI + PS
PS + PEO

wetting 
layer

~6 nm

~3 nm
Substrate

PI + PS

PS + PEO

wetting 
layer

~4.5 nm

~4.5 nm

Low PI Content (27/56/17) [ISO]

70°

PI

PEO
PS

Happy = Not Happy = Dewetting
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Summary Part ISummary Part I

• Composition of wetting layer a governing factor 
in film behavior 
– Wetting layer chemical expression is controlled by 

substrate surface energy 
• Film morphology is dependent upon substrate 

surface energy 
– Motif shift away from bulk morphology
– Anti-symmetric wetting layer found in all cases
– Autophobic dewetting found at certain combinations 

of volume fraction and surface energy
• All films studied exhibit a morphological 

transition at ~70° substrate contact angle     
(~40 mJ/m2)
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Interfacial Energy at the Free SurfaceInterfacial Energy at the Free Surface

Solvent Vapors
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Solvent VaporsSolvent Vapors

• Control of free surface (non-substrate) 
interfacial energy of important

• Method to influence structure of pre-made 
polymer films

• Option for directed self-assembly
• Typical experiments performed in “bell jars” 

at long annealing times (days)
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Solvent Vapor DeviceSolvent Vapor Device

Discrete GradientDiscrete Gradient

THF 
Bubbler

n-hexane
Bubbler

Mass Flow
Controller

N2
Gas
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Control “Bell Jar” ExperimentsControl “Bell Jar” Experiments

Reference Filmn-hexane Exposure THF Exposure

Swollen 
parallel cylinders

Parallel cylinders Perpendicular cylinders
+

Dewetting

24 hour exposure time
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Gradient Device Experiments Gradient Device Experiments 

(Reference Channel)(Reference Channel)

THF

n-hexane

• Fluorinated Acrylate does not 
influence polymer morphology
• Solvent Vapors do not 
appreciably penetrate device walls
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Gradient Device ExperimentsGradient Device Experiments

THF

HEX Channel 2 (98% THF)

Channel 4 (81% THF)

Channel 5 (46% THF)
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4

(8
1%

 h
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e) Channel 5

(46%
 hexane)

Gradient Device Experiments Gradient Device Experiments 
(Across Channels)(Across Channels)
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Gradient Device Experiments Gradient Device Experiments 

(Along Channels)(Along Channels)

THF

HEX

1 2

3 4
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Other Solvent EffectsOther Solvent Effects

Solvent A

Solvent B

• Thin films annealed in 
various solvents

• Parallel versus 
perpendicular 
orientations

• Possible uses include 
adjusted the transport 
direction of membrane 
materials
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Summary Part IISummary Part II

• Fluorinated acrylate suitable for solvent 
vapor experimentation (minimal vapor 
penetration)

• Discrete solvent vapor gradients created 
using acrylate device

• Gradients behavior mimics control (bell jar) 
experiments using both pure and mixed 
solvent vapor streams

• Variations both across channels and along 
single channel
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Next Step Next Step ––

2D Combinatorial Gradient2D Combinatorial Gradient

Substrate Surface Energy

Free Surface Energy

Example of two-dimensional gradient for 
characterizing block copolymer response to surface fields
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