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Polymer Thin Films
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- Triblock copolymers potential for designing

percolating nanomaterials

* Goal: Explore ability of polymers to

accommodate thin film boundary conditions

- Influence of surface energy on wetting and
morphological properties (surface directed
structures)

- Confinement effects on triply-periodic morphologies
(absence of preferential alignments: paralle/ or

erpendicular
P Sﬁnmetricu ) Neutral surface:

~~ wetting perpendigtian domains Wetting \

h=nd, h=(n+1/2)d,
-ﬁ

Substrate Surface Energy Gradient

Anti-Symmetric
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Network Phases
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Potential Applications
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Shell layers and surrounding
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insulating properties, to
reduce PEO crystallinity and
to provide mechanical
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» Challenges to Materials Development

New materials are:

O

o

o

2 Highly Tailored: Optimized to meet a spec/fic application.

A - Exact chemistry, microstructure, surface properties,
biocompatibility...

S Highly Formulated: Include many components on many levels.

§ - molecular, mixtures, processed and fabricated structures...

B Exhibit Complex Behavior: Properties are governed by a

Z plethora of (often competing) factors.

- composition, molecular properties, specimen geometry,
processing, environmental factors...

Discovery and optimization of new materials
/s difficult, costly and time consuming.

Thomas H. Epps, III




Combinatorial Methods
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Combinatorial and high-throughput (C&HT) techniques accelerate
the study and optimization of complex systems by launching
research beyond the “"one-at-a-time" experiment paradigm...

Single Specimens become Slow, Single Measurements become
Multivariate Libraries Automated, Parallel, Rapid Screens

o T w7
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C&HT

Thorough exploration of large parameter spaces

Rapid assessment and optimization of complex systems
Increased productivity

Reduced waste, Reduced use of expensive components
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Interfacial Energy at the Substrate
Surface
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Surface Energy Gradients Using SAM's
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chlorosilane (ODS) SAM subjected to
. UV-ozone (UVO) exposure gradient
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4| computer controlled
. motorized stage
F polymer film flow-coated on
substrate




AFM of Gradient Sample
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* Film thicknesses tuned for probing wetting layer and
first full layer behavior

» Samples annealed at 110 °C (1-12 hours)

+ Approximately 6 surface energies examined per
sample



Bulk Data on ISO Polymers

O

IS0-2a ISO-3i I50-15a
S| M,=15.4kg/mol M,=17.8 kg/mol M, = 14.5 kg/mol
| £, =49/36/15 f,=39/40/21 f,=27/56/17
: Double Orthorhombic Alternating
Gyroid Net Gyroid
d = 44 nm d=22 nm* d=22 nm

=~
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Increasing Poly(isoprene) Content
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15t full layer d,
L
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High Contact Angle

 Half period wetting layer
 Featureless islands and holes
e Likely surface parallel lamellae
d = 16 nm (scratch test)

Bulk Structure

fo = 27/56/17

Surface Energy Gradient

||||||||||

Low Contact Angle

* Dewetting, droplet formation

« Half period wetting layer
 Featureless islands and holes
d = 16 nm (scratch test)
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No Dewetting in
Pre-Anneal Sample

~ Post-anneal

g 90° Contact

/ Angle Reference

Region

Dewetting
Observed After 2
Hours Annealing
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AFM Topography Image

90°

70°

150.0 nm

1
1: Height 100.0 pm

15

10°

Wetting Layer
$d, ~ 8 nm

Domain Spacing
d, ~ 16 nm



) _Wetting Layer Composition Analysis
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Diblock Case
Symmetric
.~ wetting
h=nd,

d,
o hydrophobic

Triblock Case

- Surface energy determines

wetting layer composition profile

- Almost always asymmetric

wetting layer

- Wetting layer influences polymer

thin film structure

Neutral surface: .
perpendicular domains wetting

h = (n+1/2)d,

Anti-Symmetric

hydrophilic

Sample Triblock Wetting Layer
Composition Arrangements

T ..And
many
l I more...

Much more complicated than diblock casel




XPS - Top Surface

g
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NEXAFS -

Top Surface
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Partial Electron Yield (arb. units)

Partial Electron Yield (arb. units)
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* Examined film containing only wetting
layer (low contact angle)

* Mixed PS/PI layer

* Minimal PEO detected down to ~6 nm
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Bottom Surface Analysis

9002 JWON aJomo|2qQ / 1SIN III ‘sdd3 ‘H sowoyy



Sample Preparation

Gradient Film
O
§ _
2
S Evaporate PAA/H,O
Carbon Layer Solution on Film
°§’ Drying at 50 °C, Overnight
o
)] SAM
o 1 2 3 4 5 6 7 Substrate
9
Z
g ~ 75% Relative 1 “Pop” PAA-Layered
| Humidity, 4-6 hours Films From Substrate
& vvd
T
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Bottom Surface Analysis

O

§

2

2 TOF - SIMS XPS

. *PS and PEO detected at surface * PEO and unsaturated

S * No PI detected at surface hydrocarbon detected

5 *No SAM on surface (SAM * Relative compositions determined

° remained on substrate) using oxygen atomic

= - Significant PS content (poor concentration as basis

5 etching behavior using SF5* * Layer composition affected by
sputtering) surface energy

()

t“ /-

&

=|| XPs XPS

a|| Atomic Conc. (O) = 5.2% Atomic Conc. (O) = 9.5%

§|| carbon:Oxygen Ratio = 18.3:1 ~ 18:1 Carbon:Oxygen Ratio = 9.6:1 ~ 10:1

~|| surface PS:PEO Mole Ratio = ~ 2:1 Surface PS:PEO Mole Ratio = ~ 1:1




NEXAFS - Bottom Surface d

c l i
= { ™ Poly(styrene)
3 o 0.871 ™ poly(ethylene oxide)
o 4
§ E 0.6
S| S g4
< 0.47
g i
I
3 10° 52° 79° 88°
~ Water Contact Angle
bl —~
= >
Z @ .
< 06 — Experimental Data
L= h —— Composition Fit
= Q
Hl >
< 4
A
w| 5
| & 0.2
8 L _
EU 280 285 290 295 300 305
Photon Energy (eV)

* Poly(styrene) content

increases as hydrophobicity
of substrate (water contact
angle) increases

* Poly(ethylene oxide) content

decreases as hydrophobicity
increases

* Minimal poly(isoprene)

content at bottom surface

- Distinct differences in PS, PI,

and PEO homopolymer carbon
spectra

* Linear combination of spectra

used to estimate sample
compositions

« Good fit achieved in all cases
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Not Happy = Dewetting




Summary Part I
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Composition of wetting layer a governing factor
in film behavior

- Wetting layer chemical expression is controlled by
substrate surface energy

* Film morphology is dependent upon substrate

surface energy
- Motif shift away from bulk morphology
- Anti-symmeftric wetting layer found in all cases

- Autophobic dewetting found at certain combinations
of volume fraction and surface energy

» All films studied exhibit a morphological

transition at ~70° substrate contact angle
(~40 mJ/m?)
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Interfacial Energy at the Free Surface

Solvent Vapors



Solvent Vapors

[P

» Control of free surface (hon-substrate)
interfacial energy of important

* Method to influence structure of pre-made
polymer films

» Option for directed self-assembly

+ Typical experiments performed in "bell jars”
at long annealing times (days)
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Solvent Vapor Device
Discrete Gradient
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L

n-hexane

Bubbler

Mass Flow
Controller

THF
Bubbler




Control "Bell Jar" Experiments

24 hour exposure time

NCMC 2006
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2! Phase

n-hexane Exposure Reference Film THF Exposure

Perpendicular cylinders
+

Dewetting

Swollen Parallel cylinders
parallel cylinders
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radient Device Experiments
(Reference Channel)
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* Fluorinated Acrylate does not
influence polymer morphology

- Solvent Vapors do not
appreciably penetrate device walls
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2: Phase

Channel 4 (81% THF)

2: Phase

Channel 2 (98% THF)

2: Phase

Channel 5 (46 % THF)




Channel 2 Channel 5
(98% THF) (46% hexane)
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Gradient Device Experiments

(Along Channels)
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Thin films annealed in
various solvents

Parallel versus
perpendicular
orientations

Possible uses include
adjusted the transport
direction of membrane
materials

[P || DetaZoom |
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Summary Part I1
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Fluorinated acrylate suitable for solvent
vapor experimentation (minimal vapor
penetration)

Discrete solvent vapor gradients created
using acrylate device

Gradients behavior mimics control (bell jar)
experiments using both pure and mixed
solvent vapor streams

Variations both across channels and along
single channel



Next Step -
2D Combinatorial Gradient
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§ Example of two-dimensional gradient for

a characterizing block copolymer response to surface fields
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