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Approach to Technical Targets
H Capacity:    2010 System Targets:  6 wt. %,  45gH2/L vol. density

– Synthesize and characterize hydride materials with high hydrogen
capacity and favorable thermodynamics.  Use state-of-the-art
theory to guide materials discovery effort.

Charge/Discharge Rates: 2010 Sys. Target:  3 min. system fill (5kg)
– Develop materials that are fully reversible, catalysts that aid 

reversibility, assess nanoengineering promotion of kinetics, and 
investigate role of contamination on reaction rates

Hydrogen Purity (from Storage) :  2010 Target:  99.99% pure

– Assess release of NH3, B2H6 and other volatile 
species from metal hydrides during desorption and cycling

Cycle Life:  2010 Target:  1000 Desorption/Adsorption Cycles
– Investigate durability of materials, cycling behavior, effects 

of contaminants, structural stability, release of volatiles
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Kinetics:

Reversibility: 

Thermodynamics:

The adsorption/desorption kinetics of metal hydrides are typically too slow.  
We are using nanoconfinement and catalysts to increase kinetic performance. 

The enthalpies of reaction and activation barriers for metal hydrides are typically
too high, requiring desorption temperatures in excess of PEM fuel cell operating
temperatures.  

Many thermodynamically-promising metal hydride systems are either 
not reversible,  or reversible only under impractical conditions. 

… in addition to cycle life, H2 capacity, hydrogen purity….

Challenges to Discover and Develop 
High-Capacity Materials
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Synthesis Methods
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Screening for New H-storage Materials

 High-pressure synthesis (<2000bar, 500°C) and 
mechanical alloying (E. Rönnebro)

 Theory guidance: Prototype Electrostatic        
Ground State Search (PEGS) provides           
minimum energy  structures for                      
subsequent enthalpy  estimates                                 
(E.H. Majzoub and V. Ozolins, PRB, in press)

 Examples of potential structures:
– Metal borohydrides; Mg(BH4)2 and Ca(BH4)2
– AB(BH4)x (bialkali borohydrides)
– Alkali transition metal borohydrides

PEGS-generated 
Structure
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Solid-State Synthesis of                       
Complex Metal Hydrides

‘Hot-sintering’ under H2-pressures
• Metal + Binary Hydride + H2 → Complex Hydride
• Hydrogen pressure <100 bar in an autoclave
• Temperature <600°C
• Reaction time: several hours to several days
• Most known complex metal hydrides have been 

made by hot-sintering

The sintering technique is also used by groups at: U. Geneva (Switzerland), MPI 
(Germany), Stockholm University (Sweden), IFE (Norway), SRNL (USA), U. Tohoku, 
AIST (Japan)
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Mechanical Alloying

Mechanical alloying
• Ball milling in Argon or H2 atmosphere 
• Reaction time: several minutes to several hours
• Some complex metal hydrides have been made 

by this method
• Sometimes necessary before further heat 

treatment to form materials of interest
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High-pressure Station for Medium-
Throughput Screening

Established a synthesis route that combines 
high-energy milling (SPEX)

followed by hot-sintering under high 
H2-pressures (in-house station)

Normal Run:
<700bar H2-pressure, <450ºCCommercial autoclave

with 6 steel crucibles

Metal + Binary Hydride + H2 → Complex Hydride
Boride + Binary Hydride + H2 → Metal Borohydride

We can test six samples per experiment at a certain 
P, T and reaction time. Screening involves both 

searching for new materials and catalysts
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Why high-pressures?

Not so practical for applications, but:
Reaction times shortened
To screen for new materials: start at high 

pressures and if a hit, go to lower 
pressures (and temperatures) to optimize 
reaction conditions

Utilizing six sample holders per run gives 
a moderate throughput
 Six different molar ratios per run, or
 Six different additives per run
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Synthesis NH3 complexes of metal 
borohydrides

• NH3 complexes of other metal borohydrides synthesized
• Aluminum and zinc borohydrides have low H2 desorption temp
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NH3 complexes make Al(BH4)3 and Zn(BH4)2 more stable and Mg(BH4)2 less stable 
 provides another way to fine tune thermodynamics

J.-C. Zhao, OSU
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High-capacity borohydride 
related materials
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Reversibility of Metal Borohydrides

 By hydrogenating decomposition products, reversibility is 
shown:

For example:
CaB6 + 2CaH2 +10H2 + 2mol% additive → 3Ca(BH4)2

 Only feasible at higher H2-pressures, i.e. ca 700bar (at 
ca 350C). We are utilizing our six sample autoclave to 
screen for feasible reactions/additive 

 But, the challenge is that there can be competing 
reactions…

Patent filed: Rönnebro and Majzoub
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Reaction mechanism of Ca(BH4)2

Competing decomposition reactions:
– 3Ca(BH4)2 → CaB6 + 2CaH2 + 10H2 (9.6 wt%)
– 6Ca(BH4)2 → CaB12H12 + 5CaH2 + 13H2 (6.3 wt%)

• ΔH300K ~ 40kJ/mol (Ozolins, Majzoub, Wolverton, submitted 2008)

MAS NMR (JPL/Caltech) indicated intermediate 
species 

We are underway characterizing CaB12H12 and 
comparing with decomposition products in 
collaboration with NIST, Caltech and others
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New Materials Discovery                     
Need for effective screening

Synthesis of Ternary Borides:
– Metal or Transition metal(s) + boride
– Prepared by solid state reactions
– Need to screen through all transition metals

Hydrogenation of Ternary Borides:
– Within 150bar H2-pressure range, or, 
– Within 2000bar range (Sandia’s HP-station)

HRL: John Vajo and SNL: Ewa Ronnebro
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Other Borohydride Related Materials

• Examples:
– Mg(BH4)(NH3)x

– Ca(BH4)(AlH4)
• Challenge is that these materials may 

need multiple solution based reaction 
steps to form
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Characterization
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Characterization of Metal Hydrides

Powder XRD: metal atom structures
 Often first thumbprint if material is crystalline

Neutron Diffraction: H/D atoms located
Synchrotron XRD: Crystal structure, H atoms 

located
Raman Spectroscopy, FTIR
NMR
STMBMS (Simultaneous thermo-gravimetric 

modulated-beam mass spectrometer)
TEM: morphology, studies of additive dispersion
Thermodynamics and kinetics studies
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Computational Materials 
Screening
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Computational Materials Screening

Determine structures and polymorphs

Determine reaction pathways

Competing Structures
• database (ICSD)
• structure search (PEGS)

energy

ground state

polym
orphs

Using database structures, 
minimize reaction free-energy 
with stoichiometric constraints

Eric Majzoub, UMSL
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PEGS Predicts Several New AlH6-based Bialkali 
Hydrides*

*E.H. Majzoub and V. Ozolins, Phys. Rev. B, 77, 104115 (2008)

• PEGS outperforms database searching on a per f.u. basis
• PEGS predicts many observed structures: NaAlH4, Mg(AlH4)2, 

K2LiAlH6, etc.
• LiMgAlH6 prev. reported by Opalka, Mosher, et al.

PEGS vs. ICSD:  2 f.u. AlH6 alanate
Comparison (energies kJ/mol)Metropolis Monte Carlo +

Potential Energy Smoothing
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PEGS Method Produces Best Candidate for 
Mg(BH4)2 Ground State

•PEGS static DFT total energy lower than expt observed structure
•New low energy structure with small unit cell allows DFT phonon calculations

Mg(BH4)2 crystal
structure from experiment
LT (P61) ― 30 f.u./conv cell

HT (Fddd) ― 64 f.u./conv cell
Her, et al., Acta Cryst., B63, 561 (2007)

PEGS Prediction − LT (I-4m2)
4 f.u. primitive cell

V. Ozolins, E.H. Majzoub,  C. Wolverton,
Phys. Rev. Lett, in press

25

Eric Majzoub, UMSL
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Combined Database Search and PEGS Finds 
Several Low-Energy Ca(BH4)2 Structures

26

α

γ

β

•Four phases observed 
experimentally

• Identification debatable!

Majzoub, Rönnebro, submitted (2008)
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Reaction Pathways Predicted for AlH6-
based Alanates

Majzoub, Ozolins, Phys. Rev. B, 77, 104115 (2008)

Eric Majzoub, UMSL
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Chemical and 

Biomolecular Engineering

Screening metal hydride mixtures for hydrogen storage
using first-principles calculations

David S. Sholl, Ki Chul Kim
School of Chemical and Biomolecular Engineering, Georgia Tech

Bing Dai, J. Karl Johnson
Department of Chemical and Petroleum Engineering, University of Pittsburgh

Sudhakar Alapati
Intel Corporation

Financial support: US DOE
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Chemical and 

Biomolecular Engineering

Using DFT Calculations to Examine Reaction Thermodynamics

Planewave Pseudopotentials with PAW 
• gradient-corrected DFT (PW91)
• convergence reached with energy cutoff 
and k-space sampling
• all solid state structures fully optimized 
within experimental space group

PHONON code direct lattice method

Enthalpy Changes 
(neglecting zero point 
energies)
∆U0

Changes in Gibbs 
Free Energy ∆G

Cv and Entropy S

Plane wave Density Functional Theory (DFT) is well suited 
to characterizing reaction thermodynamics of crystalline 

materials



30
Chemical and 

Biomolecular Engineering

This approach does not identify any “interesting” reactions that were not
also identified using only the T = 0 K result

Perform initial screening using (computationally cheaper) total energy 
calculations

)()()(0 PVTSTTUUHG vibvibZP ∆+∆−′∆+∆+∆≅∆

-20 to -10 kJ/mol H2

Only gas phase H2 significant

Alapati, Johnson, and Sholl, J. Phys. Chem. C 111 (2007) 1584

“Simple” DFT Calculations Give Useful Predictions

Can we screen based on free energies without calculating phonon DOS?
Estimate zero point and T-dependent vibrational contributions from 

full calculations of ~10 examples.

Our ongoing work has used plane wave DFT calculations to screen materials
for potential use in reversible on-board hydrogen storage applications
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Chemical and 

Biomolecular Engineering

Screening approach - outline

Total energy calculations
for known crystal structures

210+ structures
13 elements (+H)

Scan composition using ∆H0
Catalog all observed rxns

(no explicit vibrational contributions)

286 three element spaces
715 four element spaces

> 16 million compositions Discard reaction

∆G(T) outside
bounds

Compute vibrational DOS for
all compounds in reaction (when 

feasible)

40+ reactions
Assess Peq at operating

T of interest

∆G(T) inside 
bounds

We have optimized the crystal structures of > 210 solid materials comprised of 
Al, B, Ca, Li, Mg, K, Na, Si, C, N, Sc, Ti, V or H

(including all relevant materials from ICSD plus more recent examples from literature)
Screening from this catalog is performed using thermodynamic methods of Akbarzadeh et al., Adv. Mat. 19 (2007) 3233

Caveats:
This approach does not include non-stoichiometric or noncrystalline compounds.
Gaseous species other than H2 (e.g. NH3) are not included.
Thermodynamic calculations cannot allow conclusions about reaction kinetics.



32
Chemical and 

Biomolecular Engineering

Recent comparisons with experimental results

CaH2 + 6 LiBH4 → CaB6 + 6 LiH + 10 H2
This reaction observed recently by Goudy et al. 

Experimentally observed and theoretically predicted Peq in good agreement

Both examples below are from experiments motivated by our earlier results

Ca(AlH4)2 + 2 MgH2
Experiments by Hanada, Lohstroh, Fichtner (J. Phys. Chem. C, 112 (2008) 131)

Experiments and theory both show a multistep process:
Ca(AlH4)2 CaAlH5 + Al + 1.5 H2

CaAlH5  CaH2 + Al + 1.5H2
12 Al + 17 MgH2  Al12Mg17 + 17 H2

Theory predicts one more reaction at higher T:
CaH2 + Al12Mg17  17 Mg + 6 Al2Ca + 6 H2

Agreement is not observed with experiments in all cases. DFT predicts that 
ScH2 + 2 LiBH4 → ScB2 + 2 LiH + 4 H2

is thermodynamically favored near room temperature, but extensive 
Experiments by Bowman, Ahn et al. show no evidence for this reaction
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Chemical and 

Biomolecular Engineering

Predicted single step reactions
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For details, see Alapati, Johnson, & Sholl, J. Phys. Chem. C 112 (2008) 5258

Mg(BH4)2 calculations do not include the amorphous
phases observed experimentally, so results with 
enthalpies close to “direct” result are likely to proceed
via decomposition into this amorphous material

Free energy calculations with Mg(BH4)2 (and several other
compounds) are not currently feasible because of the
large number of atoms in the unit cell
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Chemical and 

Biomolecular Engineering

Metastable reactions

These results are with 0 K enthalpies – ordering could change when full free energy is
considered (“entropic stabilization”). Of 43 single-step reactions, 28 have one (or more) 
alternate pathways within 10 kJ/mol H2 other than direct decomposition of one reactant

CaH2 + 1.5 Si + 3 Mg(BH4)2

CaB6 + 1.5 Mg2Si + 13 H2

45 kJ/mol H2
10.6 wt.%

48 kJ/mol H2
9.9 wt.%

53 kJ/mol H2
13.2 wt.%

54 kJ/mol H2
14.9 wt.%

[no Mg2Si] [no Mg2Si, CaB6][no CaB6]

Enthalpy

1.5Si + 3MgH2 + CaB6 + 10H2

CaH2 + 0.75Si + 0.75Mg2Si + 
1.5MgB4 + 12 H2

direct decomposition of 
Mg(BH4)2

We have extended our thermodynamic analysis to consider metastable paths
by repeating calculations using “restricted” versions of the full database of compounds
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Chemical and 

Biomolecular Engineering

Metastable reactions (cont.)

4 22LiBH C LiBC H+ → +

4 2 6 26 6 10LiBH CaH LiH CaB H+ → + +

( )4 2 2 22
2 4C Mg BH MgB C H+ → +

4 2 2 22 2 4LiBH ScH LiH ScB H+ → + +

4 2 2 22 2 4LiBH TiH LiH TiB H+ → + +

2 2MgH Mg H→ +

( )2 2 3 2 22
2 4MgH Mg NH Mg N H+ → +

4 2 26 2 6 2 2 9LiBH ScN LiH ScB BN H+ → + + +

4 2 26 2 6 2 2 9LiBH TiN LiH TiB BN H+ → + + +

2 2 2 22 2LiNH C Li CN H+ → +

2 3 2 22 2LiH LiNH BN Li BN H+ + → +

2 7 4 24 3 5LiH LiNH VN Li N V H+ + → +

2 4 3 5 3 210 5 3 10LiH LiNH N Si Li N Si H+ + → +

( )4 2 22
4Mg BH MgB H→ +

( )7 4 4 22
1.5 2.5 6MgB Mg BH MgB H+ → +

The 15 single step reactions below are predicted to have no metastable paths
with reaction enthalpies within 10 kJ/mol H2 of the stated reaction
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Challenges and Needs…
 Solid state approach

– Starting with anticipated decomposition products
– Challenge is that synthesis depends on many reaction parameters
– Need to screen for ternary metal borides
– Need to screen for new borohydride related materials

 Solution based routes
– Challenge is that the complex reaction routes involve several steps to 

make new materials
 Screening for reversibility

– Need to screen for dopants/additives/catalysts and challenge is to 
effectively analyze thermodynamics and kinetics

 Need to fully understand reaction mechanism, and to improve 
reversibility, extensive analysis is needed

 Challenge is to incorporate in situ analysis to improve the throughput 
when often multiple tools are needed 
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