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SWNT Fluorescence Characteristics

Near-IR emission following visible excitation

Low average quantum yield (but maybe >1%)

Lifetime ~101° s
Highly photostable, blink-free
Strongly polarized parallel to tube axis

Quenched by bundling, chemical damage,
close contact with SIO,







Contour Plot of Emission Intensity
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E,, absorption wavelength (nm)
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Benefits of Fluorimetric Analysis
High sensitivity
Simple sample preparation
Excellent (n,m) identification

High selectivity against impurities,
bundles, imperfect tubes

No background subtraction needed in analysis
(unlike absorption methods)

Relatively simple instrumentation




Narrow (n,m) Distribution from

Supported Catalyst Synthesis

Co-Mo catalyst process
D. Resasco
University of Oklahoma

JACS 125, 11186 (2003)




Why not use 2D Spectrofluorimetry
for routine analyses?

e Slow data acquisition
e Limited sensitivity

e Tedious manual data reduction and
Interpretation

Is there a more efficient approach?




Efficient Analysis using Discrete
Excitation Wavelengths

+ E,, spectral structure allows many
species to be excited at once

+ Experimentally simple and fast

- But reduced (n,m) discrimination for
larger diameter species
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Model NS1 NanoSpectralyzer




Rapid global fitting with 3 excitation wavelengths
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Normalized emission intensity
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Automatically Deduced (n,m) Distribution
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Relative abundance

Automatically Deduced Diameter Distribution
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Fluorimetric (n,m) analysis of
bulk SWNT samples

Advantages

See many species with few excitation wavelengths
Detect 10 pg SWNT in 50 uL (~10-19 by mass)

Suitable for many environments
Sensitive to aggregation state

Limitations
Detects only semiconducting species
Sensitive to aggregation state




Fluorimetric (n,m) analysis of
bulk SWNT samples

Qualitative analysis
OK

Quantitative analysis

Not OK: need to know factors
controlling fluorescence intensities




Factors controlling fluorescence
Intensities

Intrinsic: diameter
chirality
mod 1 or 2 identity

Extrinsic: structural defects
bundling
surfactant environment
end quenching (length)
chemical processing




Sample inhomogeneity makes
SWNT photophysics confusing

Ma
Ma
Ma

ny (n,m) structures
Ny lengths

Ny iImperfect nanotubes

Some small emissive bundles

Differences in environment (?)
Differences In sidewall species (?)

Useful

approach:

measure single SWNTs instead of ensembles




Intrinsic factors: Experimental plan

1.

Prepare agueous SDBS sample with
minimal processing

. FIind a bright, long SWNT under the

microscope

3. ldentify its (n,m) from emission spectrum

. Excite near its E,, resonance peak in linear

Intensity regime

. Measure emission intensity per unit SWNT

length with calibrated excitation and
detection




Apparatus for Near-IR Fluorescence Microscopy

Tsyboulski, et al.
Nano Lett. 5, 975 (2005)

Inverted
microscope

excitation lasers
_polarization control, focusing

Near-IR imager Near-IR spectrograph

InGaAs 2-D array plus InGaAs 1-D array \ﬁi
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Measured emission flux =

excitation intensity x
A, [ NC x
G(Az) X
Dp, x
Instrumental detection efficiency

Obtain absolute values of 6,, @
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Criteria for selecting SWNTs

Length greater than 3 um

Emission peak within 20 cm! of standard value
(not bundled)

Few or no dark regions along entire tube length

Isolated and moving freely (not stuck)




SWNT selection
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Emission spectra allow (n,m) identification

of single SWNTSs Iin agueous suspension
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Results: Absolute fluorimetric efficiencies
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Results: Absolute fluorimetric efficiencies

measured on selected SWNTSs
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FIndings

Fluorimetric efficiencies vary rather systematically,
tend to increase with optical emission frequency

The variation spans a factor of ~3 in HIPco samples
Brightest SWNT found so far is (10,2)

Variation probably dominated by E,;-dependent
nonradiative decay rates from lowest excited state

Quantum yields of good tubes may be ~10%




Studying extrinsic effects
at the single nanotube level




Fluorescence image of a free SWNT In water suspension
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Length dependence: Experimental plan

Prepare dilute agueous SDBS sample for the
microscope

Spectrally filter the near-IR camera to show
only (10,2) SWNTs

Capture near-IR micrograph video sequences

. Analyze each SWNT trajectory to find its
translational diffusion coefficient

Deduce lengths from diffusion coefficients

Plot emission intensity vs. length for all tubes




Translational Diffusion of Single SWNTs

Time (S)

D values between
1 and 6 um?/s

Deduced lengths of 200 to 1400 nm
(adjusted for wall-drag effects)
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Fluorescence intensity vs. Length for (10,2) SWNTs
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Fluorescence intensity vs. Length for (10,2) SWNTs
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FIndings

* Fluorescence gquantum yield varies widely for
all lengths
(distribution of extrinsic quenching)

 Maximum emission intensity Is linear with
length

« SWNTs shorter than ~100 nm have
unusually low emission yields
(strong exciton quenching by ends)




Studying extrinsic effects
at the single nanotube level

Fluorescence quenching by
sidewall chemical reactions

L. Cognet et al.,
Science 316, 1465 (2007)




Single Nanotube Fluorescence Stabllity
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Single Nanotube Fluorescence at pH 7
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Single Nanotube Fluorescence at pH 7
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Measurement of Single Nanotube

Reactive Quenching

pipette

excitation beam
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Acid Quenching of Single Nanotube Fluorescence
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Distribution of Fluorescence Intensity Changes

0
1500}
mzoo—
15+ / '
S
c P oL
o =
S ‘N
5 5 .
@) -1 = |
OF | . | . ! L | | I
-200 0 2002 -1 0 1 2
Al (arb. units) sideband label

@

RICE



luminescence intensity

o

Irreversible Quenching is also Stepwise

diazonium sidewall derivatization reaction
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Local Changes in Emission Intensity

l.uminescent SWNT

50 ms / frame

Steps are uncorrelated in position within a single nanotube
(resolution = 670 nm)




Model of Excitonic Quenching

segment imaged in one diffraction-limited region
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FIndings

e An exciton visits ~10,000 carbon atoms
during its intrinsic lifetime

e Each efficient quenching site can darken
~50 to 100 nm of the nanotube

* Fluorescence quantum yield is the most
sensitive probe of SWNT condition




Conclusions

* Fluorimetry provides the best combination of:
Sensitivity
Convenience
Detailed information on structures & condition

« Quantitative fluorimetric analysis of SWNT
samples is nearly at hand




Co-Workers

My lab
Sergei Bachilo
Dmitri Tsyboulski
John-David Rocha
Tonya Leeuw
Laurent Cognet (Univ. of Bordeaux)

Collaborators
Dell Doyle, James Tour (Rice)

S




Support

NSF Center for Biological and
Environmental Nanotechnology

Welch Foundation

gamcopmmel  Applied NanoFluorescence, LLC




weisman @ rice.edu




